Singapore General Hospital will NEVER ask you to transfer money over a call. If in doubt, call the 24/7 ScamShield helpline at 1799, or visit the ScamShield website at www.scamshield.gov.sg.

Help Us Improve Your Experience:

We’d love to hear from you! Rate the SGH website and share your feedback so we can enhance your online experience and serve you better. Click here to rate us

Dr Ke Yuhe

MBBS, MMED (ANES), PhD (On-going)

Associate Consultant

Singapore General Hospital Singapore General Hospital

Specialty: Anaesthesiology

Clinical Interests

Perioperative Medicine

Clinical Appointments

Associate Consultant

Anaesthesiology

About

Dr Ke Yu He is an Associate Consultant in the Department of Anaesthesiology and Perioperative Science at Singapore General Hospital (SGH), and a Clinical Associate Professor at Duke-NUS Medical School. She graduated with an MBBS from the Yong Loo Lin School of Medicine, National University of Singapore (NUS), and completed her Master of Medicine (Anaesthesia). Currently pursuing a PhD in Clinical and Translational Sciences at Duke-NUS, Dr Ke is an A*STAR scholar with a research focus on healthcare economics, artificial intelligence (AI), and big data in perioperative medicine.

Her clinical and research journey is defined by her vision to drive impactful, cost-effective, and efficient healthcare through data-driven approaches. She has won numerous accolades, including the ACP Best Teaching Award (2025), and her prolific research output has earned her over 50 peer-reviewed publications, with projects featured in high-impact journals such as npj Digital Medicine, British Journal of Anaesthesia, and Journal of Medical Internet Research.

Dr Ke is also an active educator and mentor, deeply involved in residency training and medical student teaching within SingHealth and Duke-NUS. She has presented at prestigious platforms, including the World Congress of Anaesthesiology and Hong Kong Anaesthesia Society Annual Meeting, and continues to be a leader in the implementation of AI in clinical workflows. She also serves on the EXCO of the SingHealth Cluster AI Lab (2025–2027) and is an Adjunct Research Fellow at the Duke-NUS Anaesthesiology ACP.

Education and Training

Guest Lecturer, Malaysia Anaesthesiology & Critical Care Program (2020)

Professional Appointments and Committee Memberships

  • Clinical Associate Professor, Duke-NUS Medical School
  • EXCO Member, SingHealth Cluster AI Lab (2025–2027)
  • Adjunct Research Fellow, Duke-NUS ACP

Leadership Roles

  • Chief Resident, SingHealth Anaesthesia Residency Programme (2022–2024)
  • Honorary Committee Member, SingHealth Cluster AI EXCO (2023–2024)
  • Co-Chair, SingHealth Residency Research and Innovation Committee (2021–2022)

Awards

  • ACP Best Poster Award (2022, 2023, 2024, 2025)
  • Best Publication Award, Anaesthesia ACP (2024, 2025)
  • Top 5 Chief Resident, SingHealth (2024)
  • SingHealth Publish! Award (2022)
  • Koreanesthesia First Overall Top Poster Award (2024)
  • Outstanding Undergraduate Researcher Prize, NUS (2017)
  • A*STAR MBBS-PhD Undergraduate Scholarship (2013)

Research Interests

Perioperative Medicine, Artificial Intelligence, Large Language Model

Research Studies

Large Language Model in Perioperative Medicine

Publications

Ke YH, Koh WJ, Ayuningtyas R, Chew ST, Ti LK (2018) Postoperative Residual Neuromuscular Blockade (rNMB) Following Low-Dose (<2×ED95) Atracurium in Patients Receiving Laryngeal Mask Airway - An Audit Study. Med Saf Glob Health 7: 142. doi: 10.4172/2574-0407.1000142 (Impact Factor 1.65)

Ke YH, Hwang KY, Thin TN, YE Sim, Abdullah HR. The usefulness of non-invasive Co-Oximetry haemoglobin measurement (SpHb) for the screening of preoperative anaemia in the preoperative setting. Anaesthesia. https://associationofanaesthetists-publications.onlinelibrary.wiley.com/doi/10.1111/anae.15171. (Impact Factor 5.879)

Ke YH, Huey Chew ST, Ang AS, Ge Ng RR, Boonkiangwong N, Liu W, Hao Toh AH, Caleb MG, Man Ho RC, Ti LK. Comparison of postoperative cognitive decline in patients undergoing conventional vs miniaturized cardiopulmonary bypass: A randomized, controlled trial. Ann Card Anaesth 2020;23:309-14 (Impact factor 0.66)

Oh B, Lee S, Ke YH, Kimpo M, Yeoh A, Quah TC. A "Wait-and-See" Approach to Quiescent Single-System Langerhans Cell Histiocytosis to Spare Children From Chemotherapy. Front Pediatr. 2020;8:466. Published 2020 Aug 12. doi:10.3389/fped.2020.00466 (Impact Factor 2.35)

Teo, L.M., Lim, W.Y., Ke, YH. et al. A prospective observational prevalence study of elevated HbA1c among elective surgical patients. Sci Rep 10, 19067 (2020). https://www.nature.com/articles/s41598-020-76105-2. (Impact factor 4.53)

Ou Yang, Youheng, Lo, Daryl Yin Keong; Ke, Yuhe; Lee, Dave Yee Han. Piriformis Pyomyositis Presenting as Migratory Hip to Knee Pain, JBJS Case Connector: October-December 2020 - Volume 10 - Issue 4 - p e20.00251 doi: 10.2106/JBJS.CC.20.00251

Wong JKL, Ke YH, Ong YJ, Li HH, Abdullah HR. Impact of preoperative HbA1c on postoperative complications after elective major abdominal surgery: a systematic review protocol. BMJ Open. 2020 Sep 30;10(9):e039422. doi: 10.1136/bmjopen-2020-039422. PMID: 32998928; PMCID: PMC7528368. (Impact factor: 2.50)

Ke Yu He MBBS , Nicholas B. Shannon MD, PhD , Jacklyn Yek MBBS ,

Eileen Sim MBBS , Hairil R Abdullah MBBS , A newly proposed HbA1C-Hemoglobin ratio - a better predictor of outcomes in cardiac surgery when compared to HbA1C and Anemia alone, Seminars in Thoracic and Cardiovascular Surgery (2020), doi: https://www.semthorcardiovascsurg.com/article/S1043-0679(20)30398-1/abstract (Impact factor: 2.13)

Ke YH, Chew S, Seet E, et al. Risk factors of post-anaesthesia care unit delirium in patients undergoing non-cardiac surgery in Singapore. Singapore Medical Journal. 2021 Oct. DOI: 10.11622/smedj.2021129. PMID: 34628800.(impact factor 1.14]

Wong JKL, Ke YH, Ong YJ, Li HH, Abdullah HR. Impact of preoperative HbA1c on postoperative complications after elective major abdominal surgery: a systematic review protocol. BMJ Open. 2020;10(9):e039422. Published 2020 Sep 30. doi:10.1136/bmjopen-2020-039422 (impact factor: 2.69)

Wong JKL, Ke YH, Ong YJ, Li H, Wong TH, Abdullah HR. The impact of preoperative glycated hemoglobin (HbA1c) on postoperative complications after elective major abdominal surgery: a meta-analysis. Korean J Anesthesiol. 2022 Feb;75(1):47-60. doi: 10.4097/kja.21295. Epub 2021 Oct 8. PMID: 34619855.(impact factor: 1.94)

Kwa CXW, Cui J, Lim DYZ, Sim YE, Ke Y, Abdullah HR. Discordant American Society of Anesthesiologists Physical Status Classification between anesthesiologists and surgeons and its correlation with adverse patient outcomes. Sci Rep. 2022 May 2;12(1):7110. doi: 10.1038/s41598-022-10736-5. PMID: 35501421; PMCID: PMC9061797. (Impact factor 3.9)

Chan, Steffi & Chong, Margaret & Ke, Yu & Abdullah, Hairil. (2022). Remifentanil Is Associated With Increased Length-Of-Stay After Abdominal Surgery: A Single-Center Retrospective Propensity-Matched Cohort Study. 10.21203/rs.3.rs-1363666/v1.


Ke YH, Chew S, Seet E, Wong WY, Lim V, Chua N, et al. Incidence and risk factors of delirium in post-anaesthesia care unit. Ann Acad Med Singapore. 2022;51: 87–95. doi:10.47102/annals-acadmedsg.2021297 (Impact Factor 8.71)

Ke YH, Shannon NB, Abdullah HR. Improving the accuracy of revised cardiac risk index with HbA1C: Hemoglobin ratio (HH ratio) - A retrospective cohort study. Front Med (Lausanne). 2023 Mar 24;10:998477. doi: 10.3389/fmed.2023.998477. (Impact Factor 5.31)

Ke YH, Lim DYZ, Sng GGR, Tung JYM, Chai JX, Abdullah HR. Large language models in anaesthesiology: use of ChatGPT for American Society of Anesthesiologists physical status classification. Br J Anaesth. 2023 Sep;131(3):e73-e75. doi: 10.1016/j.bja.2023.06.052. Epub 2023 Jul 18. PMID: 37474421. (Impact Factor 9.87)

CJL Loh, MH Cheng, Shang YQ, NB Shannon, HR Abdullah, YH Ke. Pre-operative shock index in major abdominal emergency surgery. Ann Acad Med Singap 52 (9), 448–456. 10.47102/annals-acadmedsg.2023143 (Impact Factor 8.71)

Yang R, Marrese-Taylor E, Ke YH, Cheng L, Chen Q, Li I. A UMLS-Augmented Framework for Improving Factuality in Large Language Models within Healthcare. arXiv [cs.CL]. 2023. Available: https://arxiv.org/abs/2310.02778

HR Abdullah, Lim DZL, Ke YH, Lan X, Feng MN. Preoperative anaesthesia dataset (PASAR). Korea Journal of Anaesthesia. https://ekja.org/journal/view.php?doi=10.4097/kja.23580  (Impact Factor 5.17)

Ke YH, Ng RRG, Elangovan S, Leong YH, Goh ZH, Graves N, Shannon NB and Abdullah HR (2023) Prehabilitation programs – a systematic review of the economic evidence. Front. Med. 10:1281843. doi: 10.3389/fmed.2023.1281843 (Impact Factor 5.31)

Ke YH, MSS Tang, CJL Loh, HR Abdullah, NB Shannon. Cluster trajectory of SOFA score in predicting mortality in sepsis. arXiv [cs.AI]. 2023. Available: https://arxiv.org/abs/2311.17066


Yong PSA, Ke YH, Kok EJY, Tan BPY, Kadir HA, Abdullah HR. Preoperative anemia in older individuals undergoing major abdominal surgery is associated with early postoperative morbidity: a prospective observational study. Can J Anaesth. 2024 Jan 5. English. doi: 10.1007/s12630-023-02676-z. Epub ahead of print. PMID: 38182829. (Impact Factor 4.2)

Ke, Y., Yang, R., & Liu, N. (2024). Comparing Open-Access Database and Traditional Intensive Care Studies Using Machine Learning: Bibliometric Analysis Study. Journal of Medical Internet Research, 26, e48330. JMIR Publications Toronto, Canada. (Impact Factor 7.08)

S Tan, CJL Loh, HR Abduallh, Ke YH. Choosing wisely campaign – Singapore physician’s attitude towards low-value care. Ann Acad Med Singap 2024;53:321-3. https://annals.edu.sg/physician-sentiments-on-low-value-investigations-in-singapore-part-of-choosing-wisely-campaign/  (Impact Factor 8.71)

Tan TF, Elangovan K, Jin L, Yao J, Yong L, Lim J, Poh S, Ng WY, Lim D, Ke Y. Fine-tuning Large Language Model (LLM) Artificial Intelligence Chatbots in Ophthalmology and LLM-based evaluation using GPT-4. arXiv preprint arXiv:2402.10083. 2024.

Ke YH, Jin L, Elangovan K, Abdullah H, Liu N, Sia ATH, Soh CR, Tung JYM, Ong JCL, Ting DSW. Development and Testing of Retrieval Augmented Generation in Large Language Models. Available at SSRN 4719185.

Ong, J. C. L., Jin, L., Elangovan, K., Lim, G. Y. S., Lim, D. Y. Z., Sng, G. G. R., Ke, Y., Tung, J. Y. M., Zhong, R. J., & Koh, C. M. Y. (2024). Development and Testing of a Novel Large Language Model-Based Clinical Decision Support Systems for Medication Safety in 12 Clinical Specialties. arXiv preprint arXiv:2402.01741.

Yu He Ke, Rui Yang, Sui An Lie, Taylor Xin Yi Lim, Hairil Rizal Abdullah, Daniel Shu Wei Ting, Nan Liu. Enhancing Diagnostic Accuracy through Multi-Agent Conversations: Using Large Language Models to Mitigate Cognitive Bias. Available: https://arxiv.org/abs/2401.14589

Leong YH, Khoo YL, Abdullah HR, Ke Y. Compliance to ventilator care bundles and its association with ventilator-associated pneumonia. Anesthesiol Perioper Sci. 2024;2(2):1-12. doi: . Springer Nature Singapore.

Abdullah HR, Lim DYZ, Ke Y, Mohamed Salim NN, Lan X, Dong Y, Feng M. 싱가포르 종합병원의 주술기 및 마취과 부문 등록체계 (PASAR)-주술기 특화 대규모 자료 집합 (data mart) 이면서 등록체계 (registry). Korean J Anesthesiol. 2024;77(1):58-65. doi: . Korean Society of Anesthesiologists. (Impact Factor 5.17)

Liu N, Jin L, Ong JCL, Kabilan E, Ke Y, Pyle A, Ting D. Large Language Models in Randomized Controlled Trials Design. 2024.

Yao J, Lim J, Lim GYS, Ong JCL, Ke Y, Tan TF, Tan TE, Vujosevic S, Ting DSW. Novel artificial intelligence algorithms for diabetic retinopathy and diabetic macular edema. Eye Vis (Lond). 2024;11(1):1-12. doi: . BioMed Central. (Impact Factor 4.1)

Yang R, Liu H, Zeng Q, Ke YH, Li W, Cheng L, Chen Q, Caverlee J, Matsuo Y, Li I. Kg-rank: Enhancing large language models for medical QA with knowledge graphs and ranking techniques. arXiv preprint arXiv:2403.05881. 2024.

Liu M, Ning Y, Ke Y, Shang Y, Chakraborty B, Ong MEH, Vaughan R, Liu N. Fairness-Aware Interpretable Modeling (FAIM) for Trustworthy Machine Learning in Healthcare. Patterns. Volume 5, Issue 10101059October 11, 2024. 10.1016/j.patter.2024.101059 (Impact factor 6.7)

Tung, J. Y. M., Gill, S. R., Sng, G. G. R., Lim, D. Y. Z., Ke, Y., Tan, T. F., Jin, L., Elangovan, K., Ong, J. C. L., & Abdullah, H. R. (2024). Comparison of the Quality of Discharge Letters Written by Large Language Models and Junior Clinicians: Single-Blinded Study. Journal of Medical Internet Research, 26, e57721. JMIR Publications Toronto, Canada. (Impact Factor 7.08)

Elangovan, K., Ong, J. C. L., Jin, L., Seng, B. J. J., Kwan, Y. H., Tan, L. S., Zhong, R. J., Ma, J. K. L., Ke, Y., & Liu, N. (2024). Lightweight Large Language Model for Medication Enquiry: Med-Pal. arXiv preprint arXiv:2407.12822.

Ke, Y., Jin, L., Elangovan, K., Abdullah, H., Liu, N., Sia, A. T. H., Soh, C. R., Tung, J. Y. M., Ong, J. C. L., & Kuo, C.-F. (2024). Retrieval Augmented Generation for 10 Large Language Models and its Generalizability in Assessing Medical Fitness.

Tan, T. F., Elangovan, K., Jin, L., Jie, Y., Yong, L., Lim, J., Poh, S., Ng, W. Y., Lim, D., & Ke, Y. (2024). Fine-tuning Large Language Model (LLM) Artificial Intelligence Chatbots in Ophthalmology and LLM-based evaluation using GPT-4. arXiv preprint arXiv:2402.10083.

Yuhe Ke, Victoria YJ Tay, Yun Hao Leong, Chun Ju Tan, Phui-Sze Au-Yong, Jacqueline XL Sim, Murugananth Nithiyananthan, Liyuan Jin, Roderica RG Ng, Marcus HO Eng, Hairil R Abdullah, The role of wearable technology in home-based prehabilitation: a scoping review, British Journal of Anaesthesia, 2024, ISSN 0007-0912, https://linkinghub.elsevier.com/retrieve/pii/S0007091224006019 (Impact factor 9.5)

Ke Y, Yang R, Lie S, Lim T, Ning Y, Li I, Abdullah H, Ting D, Liu N. Mitigating Cognitive Biases in Clinical Decision-Making Through Multi-Agent Conversations Using Large Language Models: Simulation Study J Med Internet Res 2024;26:e59439 URL: https://www.jmir.org/2024/1/e59439 DOI: 10.2196/59439 (Impact Factor 6.0)

Yang R, Zeng Q, You K, Qiao Y, Huang L, Hsieh C, Rosand B, Goldwasser J, Dave A, Keenan T, Ke Y, Hong C, Liu N, Chew E, Radev D, Lu Z, Xu H, Chen Q, Li I, Ascle—A Python Natural Language Processing Toolkit for Medical Text Generation: Development and Evaluation Study J Med Internet Res 2024;26:e60601, DOI: 10.2196/60601 (Impact factor: 6.0)


Ke, Y.H., Jin, L., Elangovan, K. et al. Retrieval augmented generation for 10 large language models and its generalizability in assessing medical fitness. npj Digit. Med. 8, 187 (2025). https://www.nature.com/articles/s41746-025-01519-z (Impact Factor 12.5)

Daniel YZ. Lim, Jason CH. Goh, Yingke He, Riece Koniman, Haoyun Yap, Yuhe Ke, Yilin Eileen Sim, Hairil Rizal Abdullah, Contrast Induced Acute Kidney Injury (CI-AKI) in Lower Limb Percutaneous Transluminal Angioplasty: A Machine Learning Approach for Preoperative Risk Prediction, Annals of Vascular Surgery, 2025, DOI: https://linkinghub.elsevier.com/retrieve/pii/S0890509625000986. (Impact Factor 1.6)

Lim DYZ, Tan YB, Ho JRY, Ke YH et al. Vision-language large learning model, GPT4V, accurately classifies the Boston Bowel Preparation Scale scoreBMJ Open Gastroenterology 2025;12:e001496. doi: 10.1136/bmjgast-2024-001496 (Impact Factor: 2.9)

Ke, Y.H., Yang Ong, B.S., Jin, L. et al. Clinical and economic impact of a large language model in perioperative medicine: a randomized crossover trial. npj Digit. Med. 8, 462 (2025). https://www.nature.com/articles/s41746-025-01858-x (Impact Factor 12.5)

Ke, Y.H., Jin, L., Elangovan, K. et al. Real-world Deployment and Evaluation of PErioperative AI CHatbot (PEACH) - a Large Language Model Chatbot for Perioperative Medicine (Accepted in Anaesthesia)

PREhabilitation of frail elderly PAtients undergoing majoR surgEry at HOME (PREPARE-HOME) using Smart Wearables: A Prospective Randomized Controlled Trial Protocol, BMJ Open (Accepted)

R N, K YH, C W H RA. Diabetes Mellitus, Preoperative Glycemic Control and Postoperative Outcomes: A Multi-Ethnic Asian Perspective. Accepted: Clinical Medicine Insights: Endocrinology and Diabetes hhttps://journals.sagepub.com/doi/10.1177/11795514251356572 (Impact factor: 3.0)

Ke, Y. H., Leong, Y. H., Jin, L., Elangovan, K., Abdullah, H. R., Sia, A. T. H., Ong, J. C. L., Wong, T. Y., Ting, D. S. W., & Shah, N. H. (2025). Differential reasoning and chain-of-thought processes in Deepseek-R1 and Open AI o3-mini-high for determining American Society of Anesthesiologists physical status. British Journal of Anaesthesia, 2025, 1-8. https://linkinghub.elsevier.com/retrieve/pii/S0007091225003642 (Impact factor: 9.8)

Jin L, Ong JCL, Elangovan K, Ke Y, Pyle A, Ting DSW, Liu N, Large Language Models in Randomized Controlled Trials Design: Observational Study, Journal of Medical Internet Research. 28/04/2025:67469 (forthcoming/in press), DOI: 10.2196/67469 (Impact factor: 6.0)

Haotian Lin, Qianni Wu, Jianbo Li, Lanqin Zhao, Dong Liu, Jingyi Wen, Yunuo Wang, Yiqin Wang, Naya Huang, Lanping Jiang, Qinghua Liu, Hanming Lin, Pengxia Wan, Shicong Yang, Wenfang Chen, Hongjian Ye, Mohammed Rashid Hassan, Ahmed Nur, Zefang Dai, Jie Guo, Shanshan Zhou, Jianwen Yu, Weixing Zhang, Wenben Chen, Ruiyang Li, Wai Cheng Iao, Juan-juan Feng, Yan Wang, Hua Hong, Peihong Yin, Qing Ye, Chao Xie, Min Zhu, Xiaoyi Liu, Yaozhong Kong, Jie Wang, Ruiyin Ma, Yu Xiao, Guoguang Chen, Rongguo Fu, Yuhe Ke, Jasmine Ong, Charumathi Sabanayagam, Daniel Ting, KarKeung Cheng, Duoru Lin, and Wei Chen. A noninvasive model for chronic kidney disease screening and common pathological type identification from retinal images. Nature Communications (Accepted)

Invited Talks

  • World Congress of Anaesthesiology, 2026
  • Hong Kong Anaesthesia Society Annual Meeting, 2025
  • Campus-Wide Research Presentation, SingHealth, 2025
  • CME Lecture: AI in Perioperative Medicine, SGH, 2025

Research Grants

  • AI.SG 100E Programme (2023): $300,000 – Clinical PI
  • NRMC Research Training Fund (2024): $500,000
  • Anaesthesia ACP Pilot Project Grant (2022): $10,000
  • SingHealth SMSTDA (2016): $1,000
  • NCRS, Duke-NUS (2024): $200,000