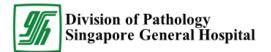
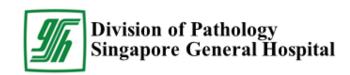


Genomics of Fibroepithelial Tumours of the Breast

Dr Puay Hoon Tan
Division of Pathology
Singapore General Hospital

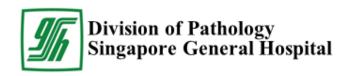




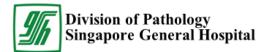
Fibroepithelial breast lesions are biphasic tumours composed of both epithelial and stromal components, and include the common *fibroadenoma* and the rarer *phyllodes tumour*.

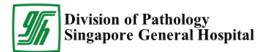
Genomics ~ structure, function, evolution, mapping, and editing of genomes. A genome is an organism's complete set of DNA, including all of its genes.

Genetics ~ study of *individual* genes and their roles in inheritance.

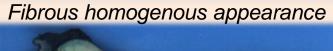


Not a molecular pathologist!



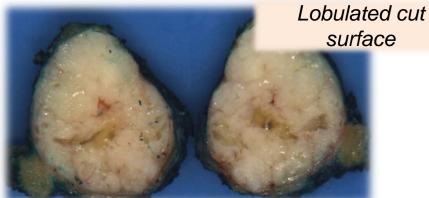

Scope

- Genomics of ~
 - Fibroadenoma
 - Phyllodes tumour
- Potential clinical applications

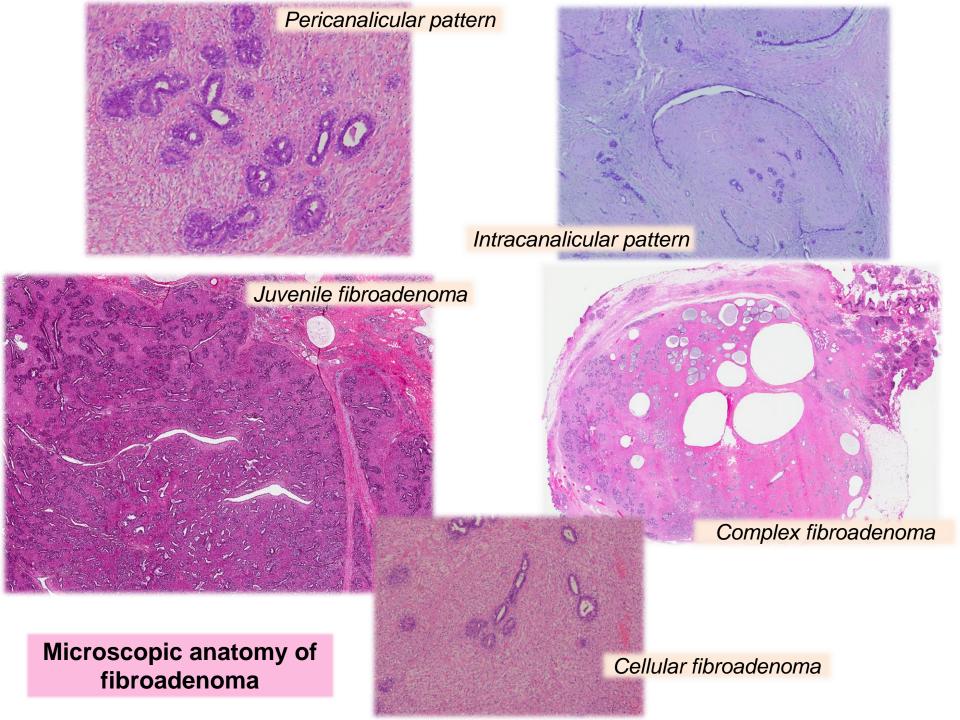


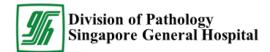
Fibroadenoma

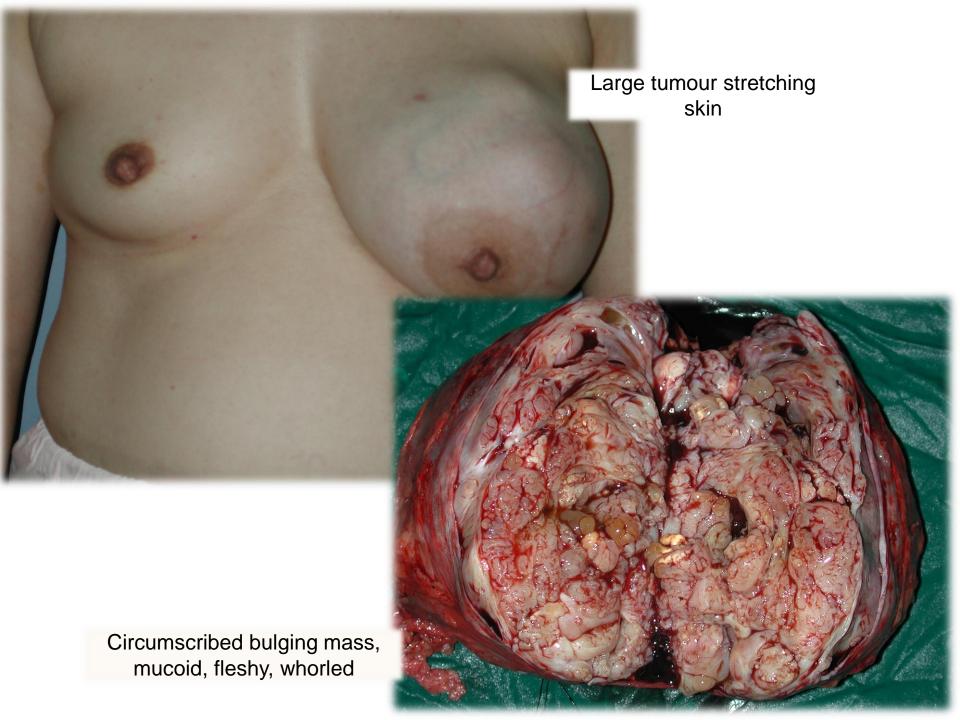
- Common benign biphasic tumour.
- Circumscribed breast neoplasm arising from the terminal-duct lobular unit (TDLU).
- Features a proliferation of both epithelial and stromal elements.
- Occurs most frequently in women of childbearing age, especially those aged < 30 years, although it may be encountered at any age.
- Estimated 10% of women have fibroadenomas.



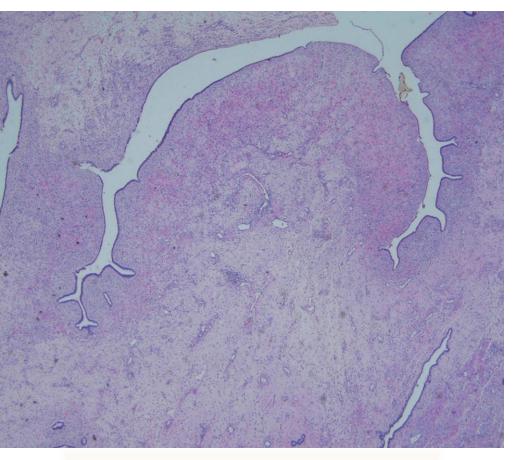
Gross anatomy of fibroadenoma







Phyllodes tumour


- Uncommon fibroepithelial neoplasm with proliferation of both epithelial and stromal components.
- "Phyllodes"
 - Derived from the Greek word "phyllon" meaning *leaf*, and "eidos" meaning form.

φύλλο εἶδο (leaf form)



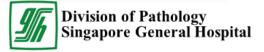
Phyllodes tumour: fibroepithelial neoplasm resembling intracanalicular fibroadenoma, but with exaggerated fronded pattern and stromal hypercellularity

Benign phyllodes tumour

- 0.3-1% of all primary breast tumours.
- Affects mature women (40-50 years).
- Higher incidence in Asians.
- Graded according to histological characteristics.
- Tendency to recur if incompletely excised.

Molecular genetics & genomics of fibroadenoma

Molecular genetics of fibroadenomas


- Cytogenetic abnormalities in 20% to 30% of fibroadenomas, usually translocations.
- No consistent pattern of specific chromosomal alterations.
- Both epithelial and stromal components are polyclonal. (Noguchi et al. Cancer Res 1993; 53: 4071-4072)
- Possible evolution into phyllodes tumors.

(Noguchi et al. Cancer 1995; 76: 1779-1785)

Low levels of LOH (0% to 1.5%).

(Wang et al. Breast Cancer Res Treat 2006; 97: 301-309)

No evidence of recurrent genetic alterations characteristic of fibroadenomas. *Rosen's Breast Pathology 4th edition 2014*

Nat Genet. 2014 Aug;46(8):877-80.

published online 20 July 2014;

Exome sequencing identifies highly recurrent *MED12* somatic mutations in breast fibroadenoma


Weng Khong Lim^{1,2,12}, Choon Kiat Ong^{1,2,12}, Jing Tan^{1,2,12}, Aye Aye Thike³, Cedric Chuan Young Ng^{1,2}, Vikneswari Rajasegaran^{1,2}, Swe Swe Myint^{1,2}, Sanjanaa Nagarajan^{1,2}, Nur Diyana Md Nasir³, John R McPherson⁴, Ioana Cutcutache⁴, Gregory Poore⁵, Su Ting Tay², Wei Siong Ooi⁶, Veronique Kiak Mien Tan⁷, Mikael Hartman⁸, Kong Wee Ong⁷, Benita K T Tan⁹, Steven G Rozen⁴, Puay Hoon Tan³, Patrick Tan^{2,10,11} & Bin Tean Teh^{1,2,11}

Key findings:

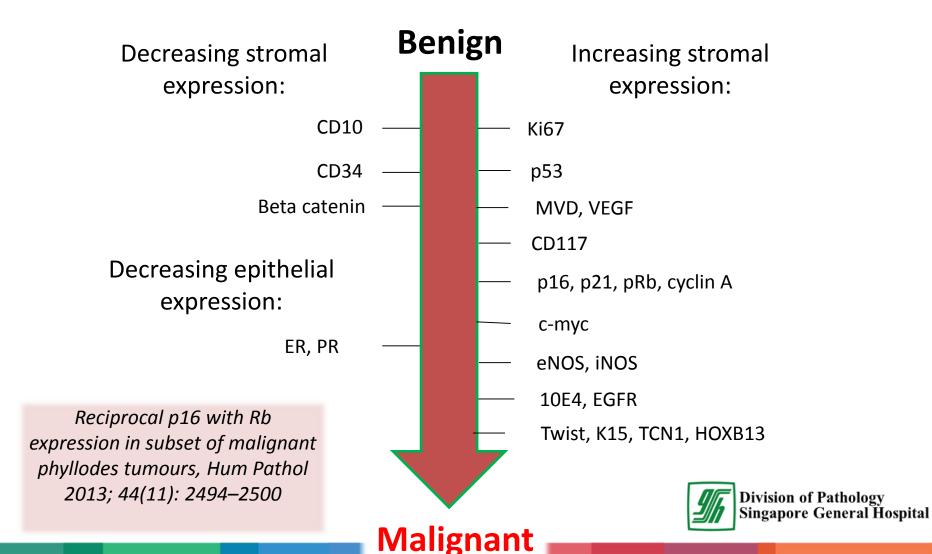
- Exome sequencing of 8 fibroadenomas with matching whole blood samples revealed recurrent somatic mutations solely in MED12 (encodes a Mediator complex subunit).
- Targeted sequencing of an additional 90 fibroadenomas confirmed highly frequent MED12
 exon 2 mutations (58/98, 59%) that are probably somatic, with 71% of mutations occurring
 in codon 44.
- Using laser capture microdissection, it was confirmed that MED12 fibroadenoma mutations
 are present in stromal but not epithelial mammary cells.

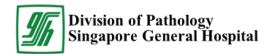
MED12 mutations in breast fibroadenoma

- MED12 is located on the X chromosome.
- Frequent MED12 exon 2 somatic mutations have been found previously only in uterine leiomyoma (UL).
- MED12 mutation spectrum observed in fibroadenomas was nearly identical to that of UL in both exon location and variant codon preference.
- Possibility that MED12 exon 2 mutations could be associated with hormonal expression.
- MED12 in phyllodes tumours.

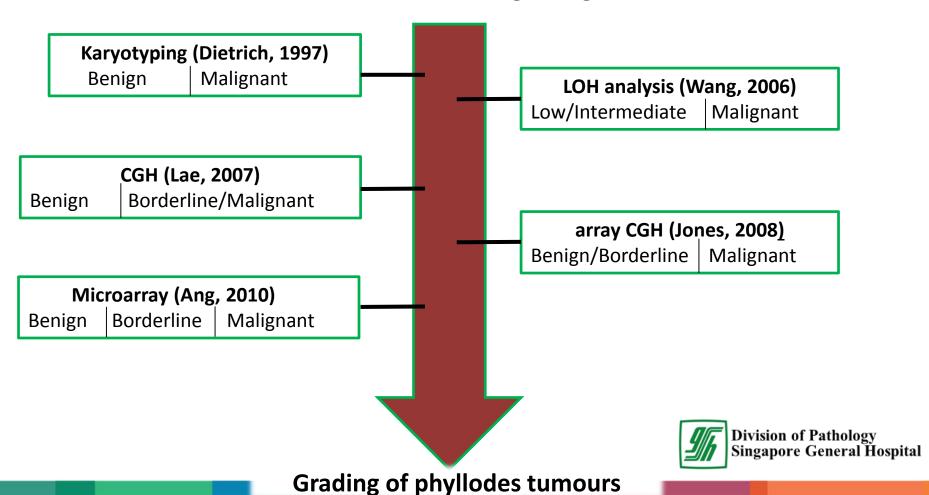
Molecular genetics & genomics of phyllodes tumour







Biomarkers in classification of phyllodes tumours


Biomarkers in classification of phyllodes tumours

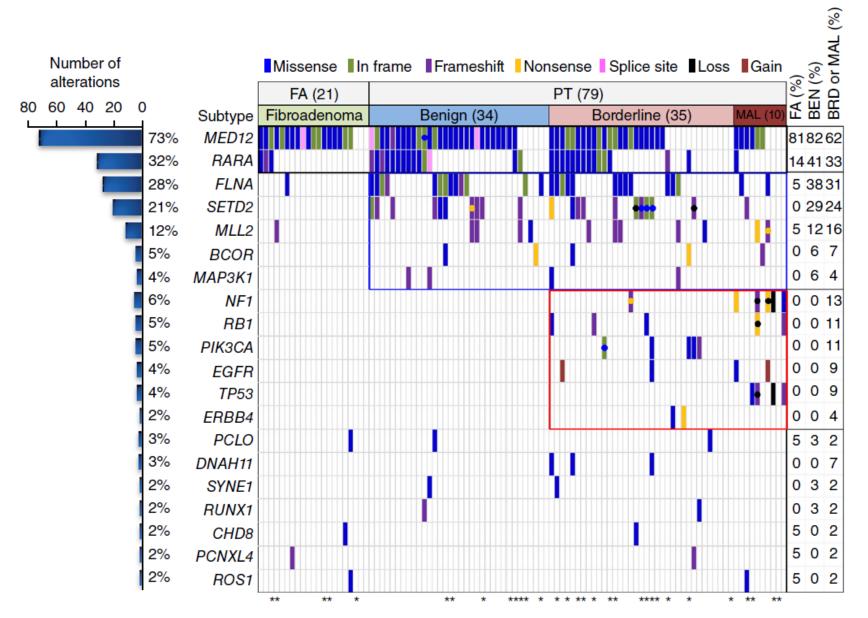
- Support current histological classification based on stromal characteristics.
- Adjunctive utility in core biopsies.
- Limited role in routine practice.

Molecular classification of phyllodes tumours

Two-tiered and three-tiered grading schemes

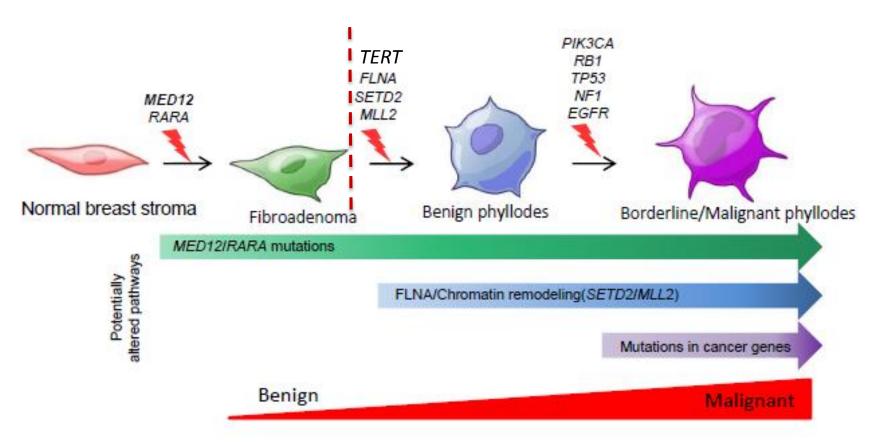
Nat Genet. 2015 Nov;47(11):1341-5.

Published online 5 Oct 2015


Genomic landscapes of breast fibroepithelial tumors

Jing Tan^{1,2,16}, Choon Kiat Ong^{1,2,16}, Weng Khong Lim^{1,2,16}, Cedric Chuan Young Ng^{1,2}, Aye Aye Thike³, Ley Moy Ng⁴, Vikneswari Rajasegaran^{1,2}, Swe Swe Myint^{1,2}, Sanjanaa Nagarajan^{1,2}, Saranya Thangaraju^{1,2}, Sucharita Dey⁴, Nur Diyana Md Nasir³, Giovani Claresta Wijaya^{1,2}, Jing Quan Lim^{1,2}, Dachuan Huang^{1,2}, Zhimei Li^{1,2}, Bernice Huimin Wong¹, Jason Yong Sheng Chan⁵, John R McPherson², Ioana Cutcutache², Gregory Poore⁶, Su Ting Tay², Wai Jin Tan³, Thomas Choudary Putti⁷, Buhari Shaik Ahmad⁸, Philip Iau⁸, Ching Wan Chan⁸, Anthony P H Tang⁸, Wei Sean Yong⁹⁻¹¹, Preetha Madhukumar⁹⁻¹¹, Gay Hui Ho⁹⁻¹¹, Veronique Kiak Mien Tan⁹⁻¹¹, Chow Yin Wong⁹⁻¹¹, Mikael Hartman^{8,12,13}, Kong Wee Ong⁹⁻¹¹, Benita K T Tan⁹⁻¹¹, Steven G Rozen², Patrick Tan^{2,4,14}, Puay Hoon Tan³ & Bin Tean Teh^{1,2,4,15}

Key findings:


- Exome sequencing of 22 phyllodes tumours followed by targeted sequencing of 100 breast fibroepithelial tumours.
- 3 distinct mutation patterns:
 - ~ frequent MED12 and RARA mutations in fibroadenomas and phyllodes tumours.
 - ~ phyllodes tumours exhibited additional mutations in FLNA, SETD2, KMT2D.
 - ~ borderline and malignant phyllodes tumours harboured mutations in cancer associated genes.

Genomic landscapes of breast fibroepithelial tumours

Tan J et al. Nat Genet. 2015 Nov;47(11):1341-5.

A proposed model of the genomic progression of breast fibroepithelial tumours

Tan J et al. Nat Genet. 2015 Nov;47(11):1341-5.

Multiple papers on the genomics of fibroepithelial tumours have been published

British Journal of Cancer (2018) 118, 277–284 | doi: 10.1038/bjc.2017.450

Keywords: phyllodes tumour; fibroadenoma; RBM15; MED12; TERT; heterogeneity

MED12, TERT promoter and RBM15 mutations in primary and recurrent phyllodes tumours

Diego A Garcia-Dios¹, Dina Levi¹, Vandna Shah¹, Cheryl Gillett¹, Michael A Simpson², Andrew Hanby³, Ian Tomlinson⁴ and Elinor J Sawyer^{*,1}

¹School of Cancer and Pharmaceutical Sciences, Guy's Hospital, King's College London, London SE1 9RT, UK; ²Medical and Molecular Genetics, Guy's Hospital, King's College London, London, UK; ³Leeds Institute of Cancer and Pathology, Cancer Genetics Building, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK and ⁴Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

- MED12 mutations are common in FAs and benign PTs.
- MED12 mutations can be discordant in recurrent PTs.
- TERT mutations show less temporal heterogeneity.
- RBM15 may be a novel driver mutation in borderline/malignant PTs.

Feb 2018

Genetic and Clinical Characteristics of Phyllodes Tumors of the Breast @ CHANGE

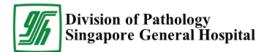
Ji-Yeon Kim^{*, 1}, Jong Han Yu^{†, 1}, Seok Jin Nam[†], Seok Won Kim[†], Se Kyung Lee[†], Woong-Yang Park^{‡, §}, Dong-Young Noh[¶], Do-Hyun Nam^{§, #, **}, Yeon Hee Park^{*, §, **} Wonshik Han[¶] and Jeong Eon Lee^{†, §, **}

*Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,06351, Korea; Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea; *Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea; *Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Korea; ¹Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea; *Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea; **Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Korea

Nov 2018

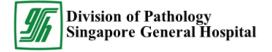
Histopathology 2018, 73, 809-818. DOI: 10.1111/his.13701

Molecular insights into paediatric breast fibroepithelial tumours


Timothy K Y Tay, ¹ Peiyong Guan, ² Benjamin N Loke, ¹ Nur Diana M Nasir, ¹ Vikneswari Rajasegaran, ² Aye Aye Thike, ¹ Derrick Lian, ³ Kenneth T E Chang, ³ Bin Tean Teh, ² Cedric C Y Ng² & Puay-Hoon Tan⁴

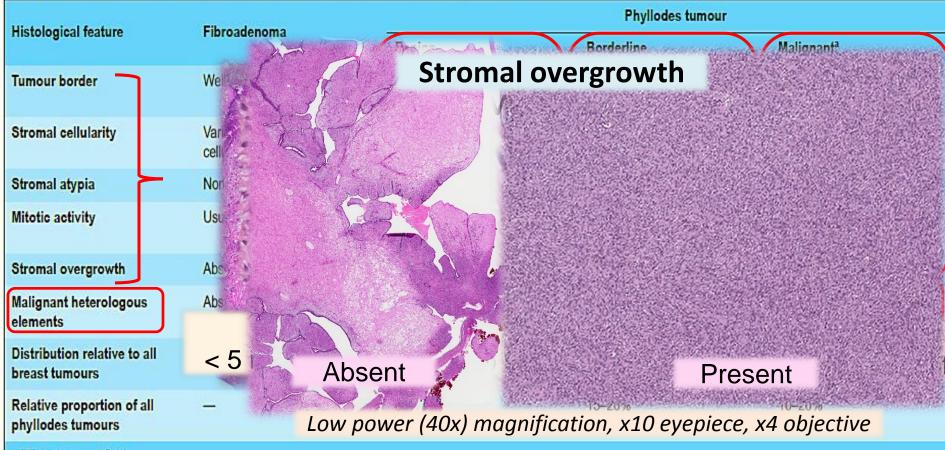
¹Department of Anatomical Pathology, Singapore General Hospital, Singapore, ²Laboratory of Cancer Epigenome, National Cancer Centre, Singapore, ³Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, and ⁴Division of Pathology, Singapore General Hospital, Singapore

- MED12 mutations in 53.8% of conventional and 35% of juvenile FAs.
- No TERT promoter mutations.
- Metachronous and synchronous tumours have mutational heterogeneity.


What's the clinical relevance?

- Genomics based classification of breast fibroepithelial lesions, enhancing diagnostic accuracy ~
 - Differentiating FA from PT (J Pathol 2016;238:508-518)
 - Differentiating PT from other spindle cell tumors (APMIS 2016;124:356-364)
 - Differentiating malignant PT from metaplastic carcinoma (Pathology 2017;49:786-789)
 - Refining the grading of PT (Pathology 2019 Aug;51(5):531-534)
- Discovery of candidate therapeutic targets in borderline/malignant PT ~
 - PIK3CA activating mutations
 - EGFR amplifications

What's the clinical relevance?


- MED12 mutations correlated with improved disease free survival (J Clin Pathol 2015;68:685-91; Genes, Chromosomes & Cancer 2016;55:495–504)
- MED12 and RARA mutations linked to hormone receptor signaling.

Phyllodes tumour

WHO Classifications (& Grading) 1981, 2003, 2012, 2019

Table 11.01 Histological features of fibroadenoma, benign, borderline and malignant phyllodes tumours

HPF, high-power fields.

WHO classification of breast tumours 2012

^{*} While these features are often observed in combination, they may not always be present simultaneously. Presence of a malignant heterologous element qualifies designation as a malignant phyllodes tumour, without requirement for other histological criteria.

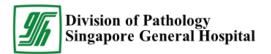
Table 11.01 Histological features of fibroadenoma, benign, borderline and malignant phyllodes tumours

Histological feature	Fibroadenoma	Phyllodes tumour		
		Benign	Borderline	Malignant ^a
Tumour border	Well-defined	Well-defined	Well-defined, may be focally permeative	Permeative
Stromal cellularity	Variable, scanty to uncommonly cellular, usually uniform	Cellular, usually mild, may be non-uniform or diffuse	Cellular, usually moderate, may be non-uniform or diffuse	Cellular, usually marked and diffuse
Stromal atypia	None	Mild or none	Mild or moderate	Marked
Mitotic activity	Usually none, rarely low	Usually few (< 5 per 10 HPF) 2.5 mitoses/mm2	Usually frequent (5–9 per 10 HPF) 2.5 to < 5 mitoses/mm2	Usually abundant (≥ 10 per 10 HPF) ≥ 5 mitoses/mm2
Stromal overgrowth	Absent	Absent	Absent, or very focal	Often present
Malignant heterologous elements	Absent	Absent	Absent	May be present
Distribution relative to all breast tumours	Common	Uncommon	Rare	Rare
Relative proportion of all phyllodes tumours	_	60–75%	15–20%	10–20%

HPF, high-power fields.

WHO classification of breast tumours 2019

* Exception ~ liposarcoma


^a While these features are often observed in combination, they may not always be present simultaneously. Presence of a malignant heterologous element qualifies designation as a malignant phyllodes tumour, without requirement for other histological criteria.

Phyllodes tumours: issues with current grading & classification approaches

- Grade assignment is imperfect:
 - Stromal hypercellularity, atypia, mitoses, overgrowth, borders.

{Singapore nomogram based on stromal Atypia, Mitoses, Overgrowth, Surgical margins

(AMOS criteria), validated in other cohorts.}

Phyllodes Tumour Recurrence

following a histologic diagnosis of b

This tool was designed for use by h

your doctor. Please read the SGH

Risk assessment tool

Welcome to the Singapore General A: Atypia

This tool is based on a study under W. Mitoses

This tool was designed for use by the study under the study un

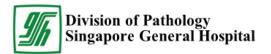
Detailed information on this risk as: O: Overgrowth

S: Surgical margin

ecurrence free likelihood

69-76.)

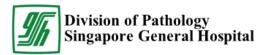
ed to discuss the results with

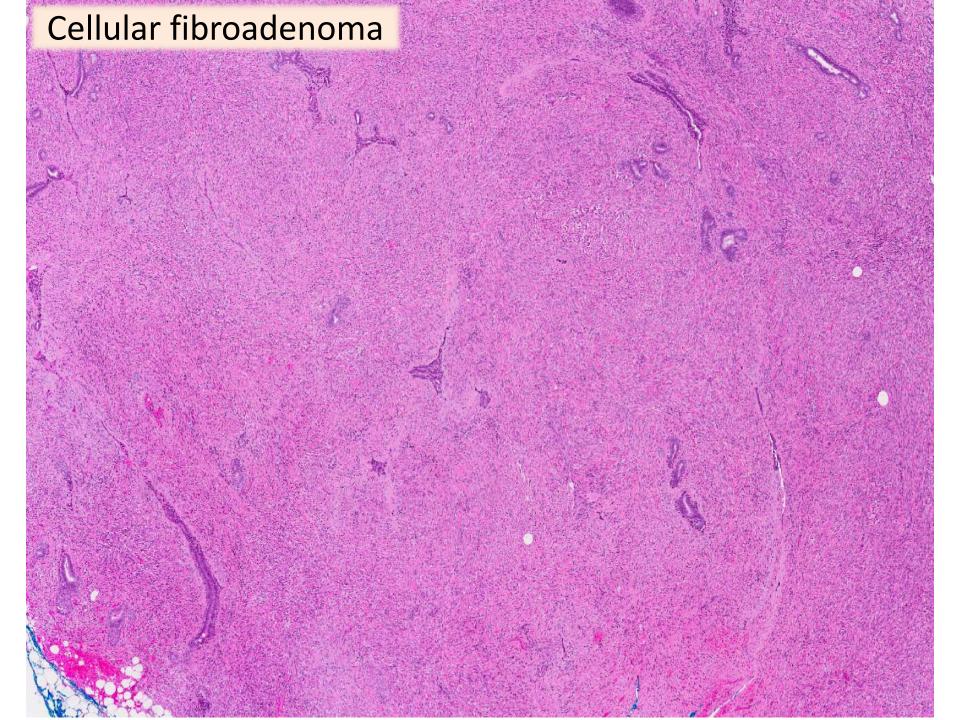

None or mild 0 Marked 6 Does the tumor show stromal cytologic atypia Moderate 0 How many mitoses are visible per 10 high powered fields? • Mitoses per 10 hpf 0 Is there stromal overgrowth seen? 0 Absent Present Negative 0 Positive 0 Are the margins histologically involved (positive)?

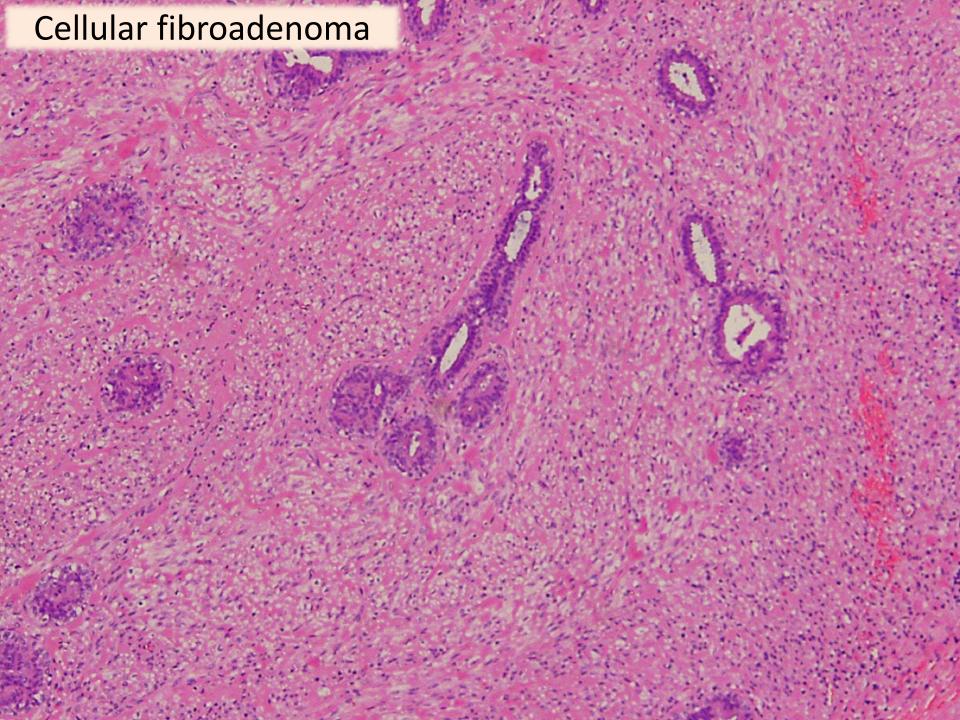
https://mobile.sgh.com.sg/ptrra

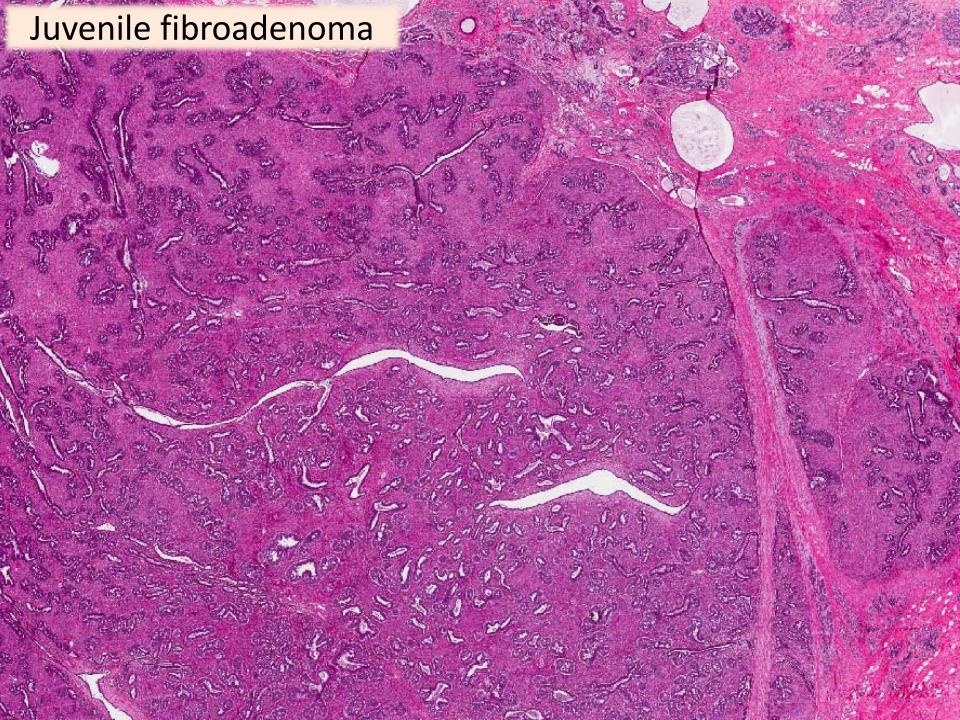
Phyllodes tumours: issues with current grading & classification approaches

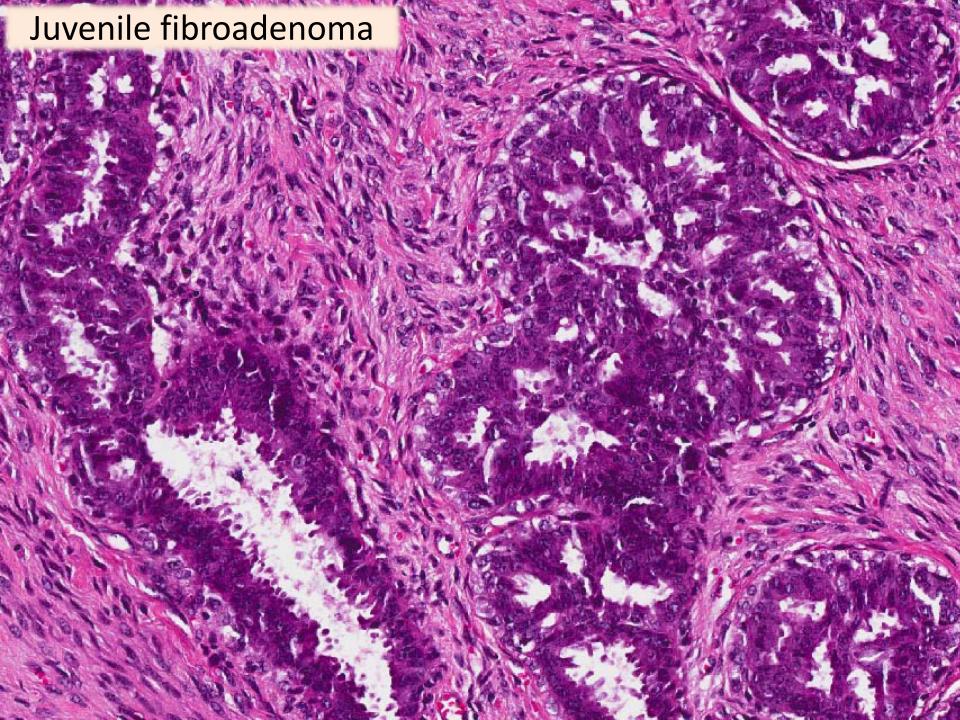
- Distinguishing different entities ~
 - Cellular fibroadenoma vs benign phyllodes tumour.
 - Metaplastic spindle cell carcinoma vs malignant phyllodes tumour vs sarcoma.

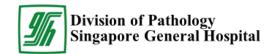

Important for accurate grading and diagnosis due to differences in treatment

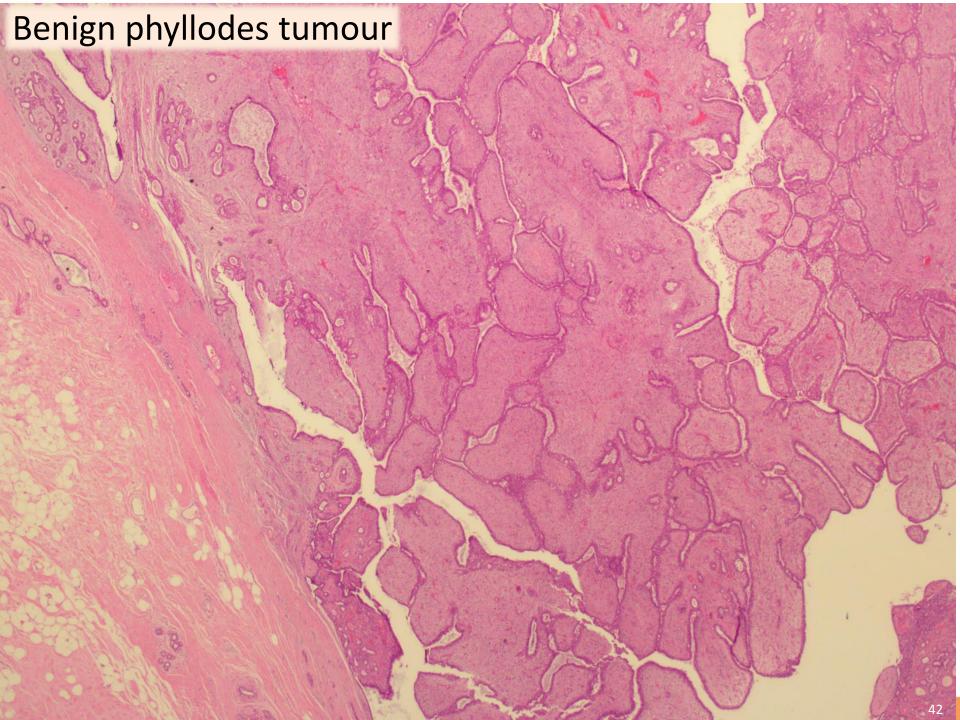



Cellular fibroadenoma vs phyllodes tumour

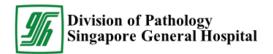

Cellular fibroadenoma ~

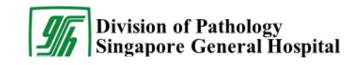

- Typical fibroadenoma but with increased stromal cellularity.
- Degree of stromal cellularity for this designation is subjective, varying among pathologists.
- Stromal cellularity tends to be increased in fibroadenomas in the young.
- Lacks leaf-like fronds of phyllodes tumour.
- Histological features overlap with the juvenile fibroadenoma.





Cellular fibroadenoma vs phyllodes tumour


- Phyllodes tumour ~
 - Exaggerated intracanalicular growth pattern.
 - Elongated epithelium lined arcs.
 - Broad, well-developed stromal fronds.
 - At least mild stromal hypercellularity.



Cellular fibroadenoma vs phyllodes tumour

- Overlapping histological characteristics ~
 - Stromal hypercellularity
 - Intracanalicular pattern
- Challenging on core biopsy!

Journal of Pathology

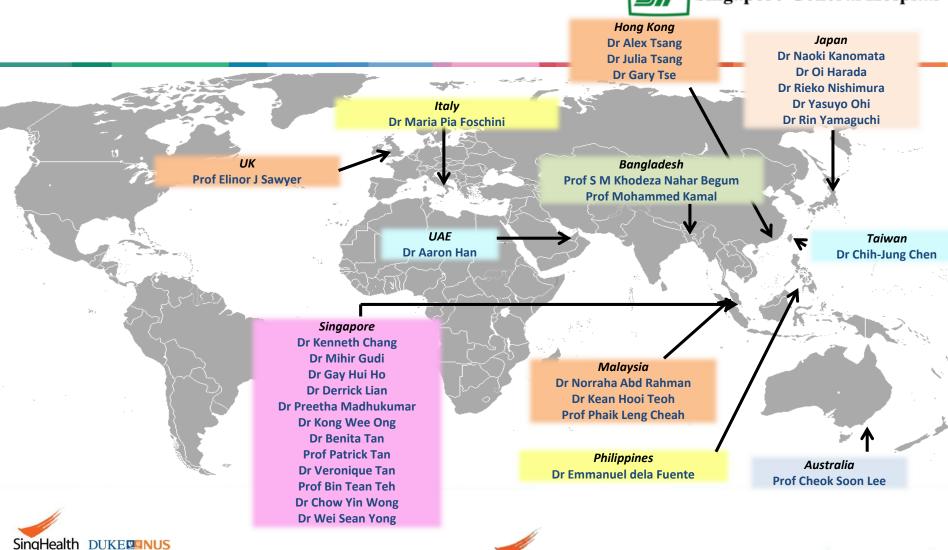
J Pathol 2019

Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/path.5333

Genomic characterisation of breast fibroepithelial lesions in an international cohort

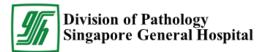
Nur Diyana Md Nasir¹, Cedric Chuan Young Ng^{2,3}, Vikneswari Rajasegaran^{2,3}, Suet Far Wong², Wei Liu², Gwendolene Xin Pei Ng^{2,4}, Jing Yi Lee², Peiyong Guan³, Jing Quan Lim⁵, Aye Aye Thike¹, Valerie Cui Yun Koh¹, Benjamin Nathanael Loke^{1,6}, Kenneth Tou En Chang⁷, Mihir Ananta Gudi⁷, Derrick Wen Quan Lian⁷, Preetha Madhukumar^{4,8}, Benita Kiat Tee Tan^{4,8,9}, Veronique Kiak Mien Tan^{4,8}, Chow Yin Wong^{4,8}, Wei Sean Yong^{4,8}, Gay Hui Ho⁴, Kong Wee Ong⁴, International Fibroepithelial Consortium[†] Patrick Tan³, Bin Tean Teh^{2,3*} and Puay Hoon Tan^{1,10*}

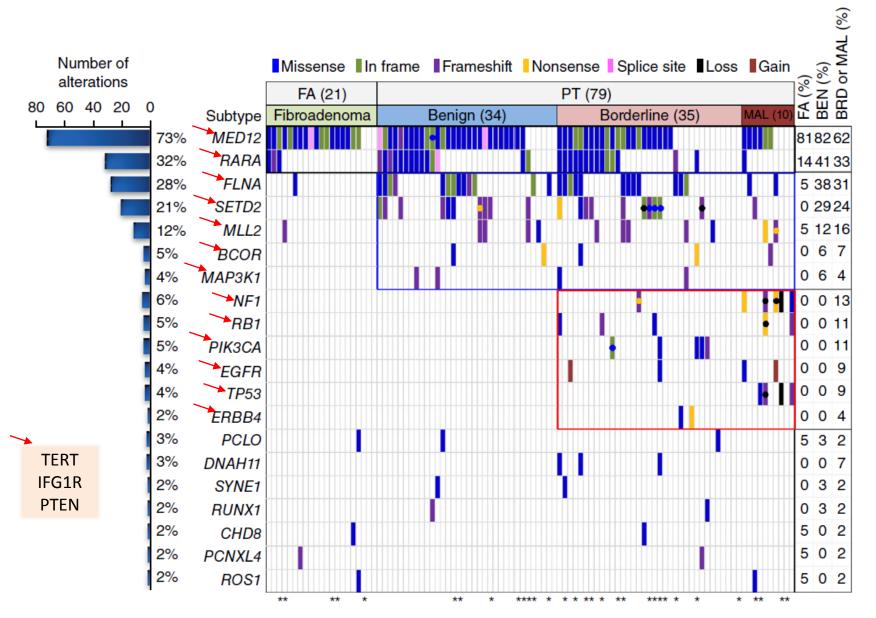
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
- ² Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- ³ Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- ⁴ Division of Surgical Oncology, National Cancer Center Singapore, Singapore
- ⁵ Lymphoma Genomic Translational Laboratory, National Cancer Centre Singapore, Singapore
- ⁶ Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- ⁷ Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore
- ⁸ Department of General Surgery, Singapore General Hospital, Singapore
- Department of Surgery, Sengkang General Hospital, Singapore
- Division of Pathology, Singapore General Hospital, Singapore



International Consortium of Breast Fibroepithelial Tumours

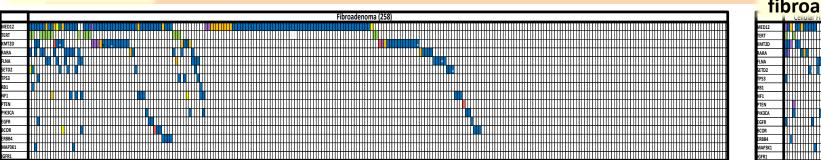
ACADEMIC MEDICAL CENTRE

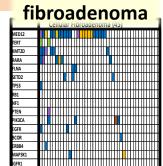


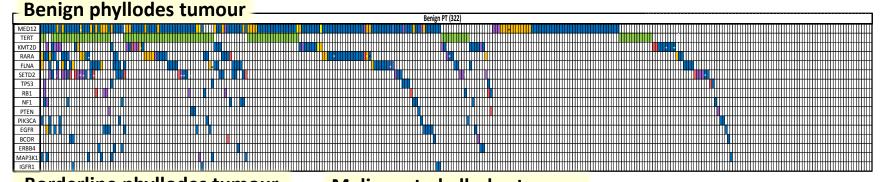

PATIENTS. AT THE HE TOF ALL WE DO.

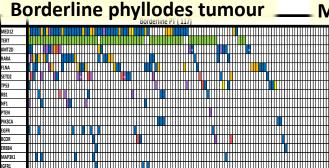
Aims

- Expand our investigation of FELs to a large international multi-institutional cohort, using a customised 16-gene set.
 - Differentiate FAs from PTs
 - Refine grading of PTs
- Compare the genetic profile of Asian with non-Asian FELs.

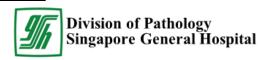



Genomic landscapes of breast fibroepithelial tumours



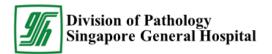

Tan J et al. Nat Genet. 2015 Nov;47(11):1341-5.

Waterfall plot of genetic aberrations in FELs and their mutation types Cellular

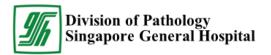


Legend:

Nonsense
FrameShift InDel
Stop Loss
InFrame InDel
Missense
Splice Site
Promoter Mutation


796 Samples

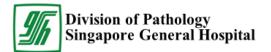
* 2 Mutations


Materials and Methods

Gene	Function
MED12	Subunit of Mediator complex for transcriptional initiation
TERT	Transcriptase for telomere elongation and genomic stability
KMT2D	Methyltransferase for epigenetic regulation and tumour suppression
FLNA	Filamin for cytoskeleton formation and ECM positioning
RARA	Transcriptional factor for gene repression and cellular differentiation
SETD2	Methyltransferase for DNA damage repair and tumour suppression
NF1	Neurofibromin for tumour suppression
ERBB4	Receptor for mitogenesis and differentiation

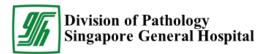
Materials and Methods

Gene	Function
EGFR	Receptor for cell proliferation and survival
IGF1R	Receptor for cell proliferation and survival
PTEN	Phosphatase for cell division, genomic stability and tumour suppression
BCOR	Transcriptional factor for gene repression
MAP3K1	Kinase regulating apoptosis pathways
RB1	Regulates cell proliferation, DNA replication and tumour suppression
TP53	Regulates cell proliferation, DNA replication and tumour suppression
PIK3CA	Subunit of kinase for cell proliferation, migration, protein production

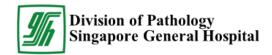

Results (FA vs PT)

- Targeted sequencing revealed frequent MED12 mutations across all FELs, and a spectrum of other mutations at varying rates.
- FAs exhibited *MED12* (45%), *KMT2D* (15%) and *RARA* (9%) mutations, while other gene aberrations were much less common, and there was no *IGF1R* mutation.
- No significant genetic differences were detected between conventional (simple or non-cellular) and cellular FAs.
- PTs displayed higher variant prevalence than FAs for *MED12* (56% vs 45%, p=0.0017), *TERT* promoter (41% vs 6%, p<0.0001), *RARA* (17% vs 9%, p=0.0013), *FLNA* (16% vs 6%, p<0.0001), *SETD2* (13% vs 4%, p<0.0001), *TP53* (6% vs 2%, p=0.0054), *RB1* (5% vs 1%, p=0.0004), *EGFR* (5% vs 2%, p=0.0248), and *IGF1R* (2% vs 0%, p=0.0271).
- Non-Asian PTs showed more frequent KMT2D mutations (25% vs 14%, p=0.018).

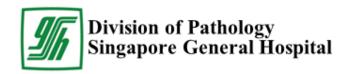
Results (FA vs PT)


No. of Mutati ons	Total FELs (n = 796)	FA (n = 303)	Conventional FA (n = 258)	Cellular FA (n = 45)	Phyllodes Tumours (n = 493)	Benign (n = 322)	Borderline (n = 117)	Malignant (n = 54)	p-value
0	185 (23%)	104 (34%)	91 (35%)	13 (29%)	81 (16%)	54 (17%)	17 (15%)	10 (19%)	<0.001
1	244 (31%)	120 (40%)	102 (40%)	18 (40%)	124 (25%)	93 (29%)	21 (18%)	10 (19%)	
≥2	367 (46%)	79 (26%)	65 (25%)	14 (31%)	288 (58%)	175 (54%)	79 (68%)	34 (63%)	

- The number of mutations was positively correlated with diagnosis, in that PTs were more likely to harbour multiple mutations than FAs (p<0.001).
- Most borderline and malignant PTs possessed 2 or more mutations.
- FAs had a higher proportion of cases without any mutations or with only a single mutation compared to PTs.


Results (PT grades)

- A significantly higher number of genetic aberrations observed with increasing grade of PTs, in particular with regard to *TERT* promoter (32% vs 61% vs 46%, p<0.0001), *FLNA* (13% vs 22% vs 19%, p=0.0289), *TP53* (3% vs 9% vs 17%, p=0.0003) and *RB1* (3% vs 7% vs 11%, p=0.0297) for benign, borderline and malignant PTs respectively.
- MED12 mutations on the other hand significantly decreased as the PTs progressed (62% vs 50% vs 37%, p=0.0006).
- A comparison between borderline and malignant PTs did not show significant differences, apart from PTEN (1% vs 11%, p=0.0043).


Conclusions

- Potential adjunctive utility of the 16 gene mutational profile in stratifying FELs that are histologically challenging to characterize.
- MED12 aberrations common in FAs and PTs, with other gene alterations which affect transcriptional regulation such as through the action of KMT2D and RARA.
- Involvement of ER and Wnt pathways is plausible given their interaction with MED12, and MED12 mutations may possibly trigger their aberrant signalling.
- TERT promoter mutations could potentially discriminate between FAs and PTs; while presence of TERT promoter, FLNA, TP53, RB1, NF1, PTEN, PIK3CA, ERBB4 and EGFR aberrations may implicate higher PT grades.

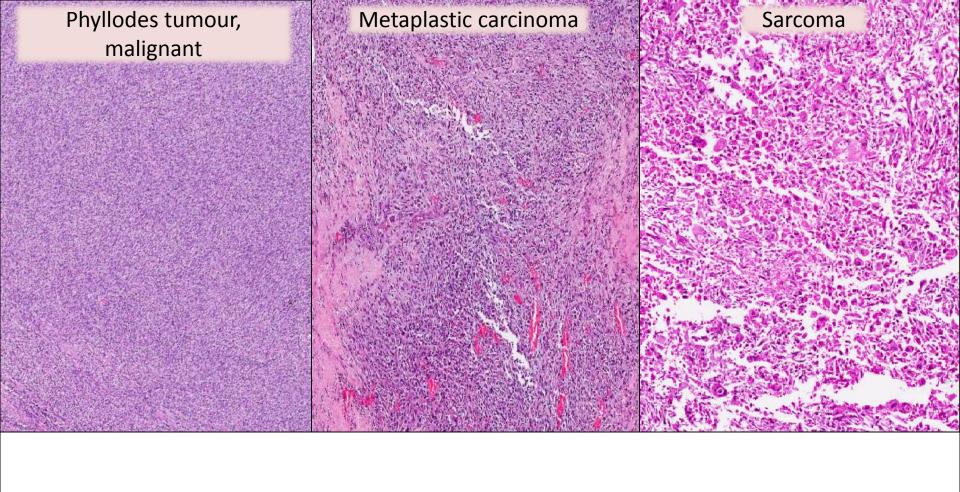
Genomics of Fibroepithelial Tumours of the Breast

~ Potential clinical applications

Metaplastic spindle cell carcinoma

Malignant phyllodes tumour

Sarcoma



Metaplastic carcinoma vs malignant phyllodes tumour vs sarcoma

Table 3.4 Distinguishing Features of Sarcomatous Stromal Overgrowth in Malignant Phyllodes Tumour, Spindle Cell Metaplastic Carcinoma, and Primary Breast Sarcoma

Malignant phyllodes tumour (stromal overgrowth)	Spindle cell metaplastic carcinoma	Primary breast sarcoma
Present (but may be hard to identify)	Absent	Absent
Present	Absent	Absent
Absent	May be present	Absent
Usually absent, may be focal reactivity	Present, but may be focal	Usually absent
Usually absent, may be focal reactivity	Present, but may be focal	Usually absent
Absent or present	Present, but may be focal	Usually absent
	(stromal overgrowth) Present (but may be hard to identify) Present Absent Usually absent, may be focal reactivity Usually absent, may be focal reactivity	Carcinoma Carcinoma

PRECLINICAL STUDY

Breast sarcomas and malignant phyllodes tumours: comparison of clinicopathological features, treatment strategies, prognostic factors and outcomes

```
Sue Zann Lim<sup>1</sup> · Sathiyamoorthy Selvarajan<sup>2</sup> · Aye Aye Thike<sup>2</sup> · Nur Diyana Binte Md. Nasir<sup>2</sup> · Benita Kiat Tee Tan<sup>3</sup> · Kong Wee Ong<sup>3</sup> · Puay Hoon Tan<sup>4</sup>
```

- 17 cases of breast sarcoma and 45 cases of malignant PT.
- No significant difference in survival outcomes.
- Similar clinicopathological features.
- Suggesting shared biological relationship.

PRECLINICAL STUDY

Genomic profile of breast sarcomas: a comparison with malignant phyllodes tumours

Sue Zann Lim¹ · Cedric Chuan Young Ng^{2,3} · Vikneswari Rajasegaran^{2,3} · Peiyong Guan⁴ · Sathiyamoorthy Selvarajan⁵ · Aye Aye Thike⁵ · Nur Diyana Binte Md Nasir⁵ · Valerie Cui Yun Koh⁵ · Benita Kiat Tee Tan¹ · Kong Wee Ong¹ · Bin Tean Teh^{2,3,6,7} · Puay Hoon Tan⁸

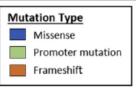
- 9 cases ~ 3 angiosarcomas, 6 non-angiosarcomas (5 undifferentiated pleomorphic sarcoma, 1 osteosarcoma).
- TERT, MED12 mutations common in non-angiosarcomas, whereas angiosarcomas did not demonstrate mutations in these genes.
- Breast sarcomas (non-angiosarcoma) show similar genomic alterations to malignant phyllodes tumours.
- Suggesting shared biological relationship.

CORRESPONDENCE

Pathology. 2017 Dec;49(7):786-789.

A genetic mutation panel for differentiating malignant phyllodes tumour from metaplastic breast carcinoma Joe Yeong^{1,2}
Aye Aye Thike¹
Cedric Chuan Young Ng³
Nur Diyana Md Nasir¹
Kiley Loh³
Bin Tean Teh³
Puay Hoon Tan¹

¹Division of Pathology, Singapore General Hospital, ²Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), and ³National Cancer Center Singapore, Singapore


A 55-year-old female presented with a locally advanced breast tumour with metastasis to the right lung and soft tissue of the left lumbar region. The initial biopsy of the breast tumour diagnosed a malignant high-grade tumour (7 cm in the right breast) with a differential diagnosis of either SCMBC or malignant PT. Patient was treated as for

Targeted-sequencing using the FEB assay for the patient

Gene	Transcript ID	Nucleotide (genomic)	Nucleotide (cDNA)	Amino Acid (Protein)	Variant Freq (%)	Mutation Type
RB1	NM_000321	g.chr13: 49030479 delA	c.1954delA	p.K652fs	11.32	Frameshift
TP53	NM_001126115	g.chr17: 7578240-7578241delCA	c.212_213delCA	p.V71fs	15.96	Frameshift
MED12	NM_005120	g.chrX: 70339254 G>T	c.G131T	p.G44V	15.10	Missense
TERT		g.chr5: 1295228 G>A			13.98	Promoter mutation

Schematic showing the mutations of the patient in the 16 genes panel

MED12	TERT	KMT2D	FLNA	RARA	SETD2	NF1	ERBB4	EGFR	IGF1R	PTEN	BCOR	MAP3K1	RB1	TP53	PIK3CA

ology ral Hospital

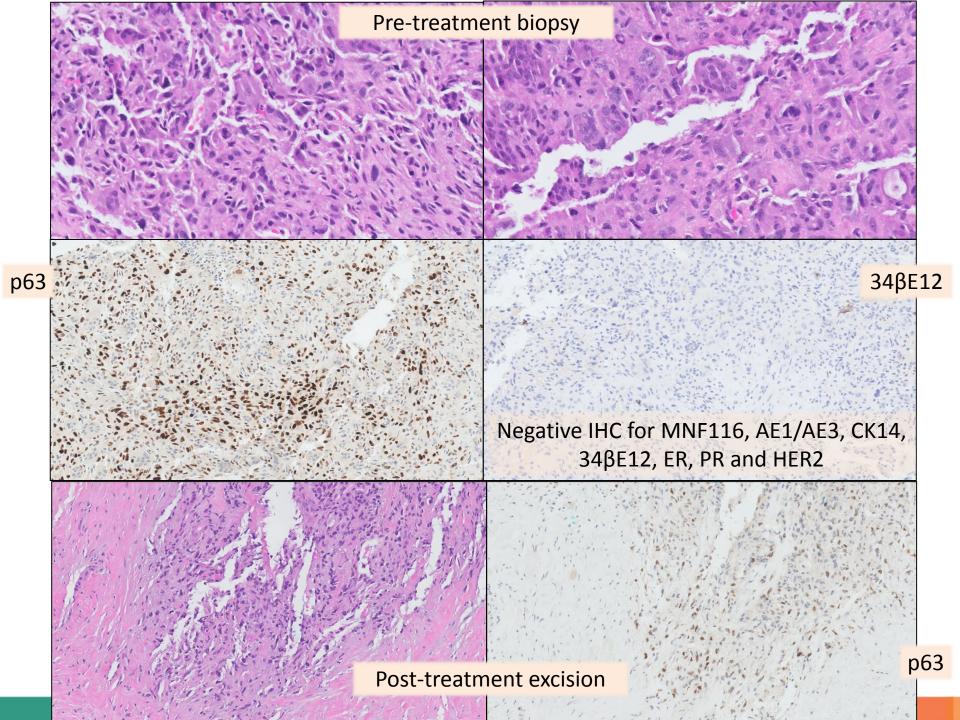
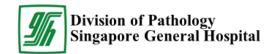



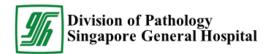
Table 1 Comparison of sequencing results of spindle cell metaplastic carcinomas with malignant phyllodes tumours of the breast, using the 16 gene panel

	Ng et al., 20178	Ross et al., 2014 ⁷	Liu et al., 2016 ¹⁰	Piscouglio et al., 2016 ¹¹	Cani et al., 2015 ¹²	Our data
Genes/tumour	Spindle cell metaplastic	Spindle cell metaplastic	Malignant phyllodes	Malignant phyllodes	Malignant phyllodes	Malignant phyllodes
type	carcinoma of	carcinoma of	tumour of	tumour of	tumour of	tumour of
	the breast	the breast	the breast	the breast	the breast	the breast
MED12	0/10, 0%	0/2, 0%	3/10, 30%	4/13, 31%	2/5, 40%	8/19, 42%
TERT	0/10, 0%	0/2, 0%	6/10, 60%	8/13, 62%	3/5, 60%	11/19, 58%
RARA	0/10, 0%	0/2, 0%	1/10, 10%	1/13, 8%	NA	2/19, 11%
PIK3CA	6/10, 60%	0/2, 0%	3/10, 30%	1/13, 8%	NA	1/19, 5%
PTEN	0/10, 0%	0/2, 0%	1/10, 10%	1/13, 8%	NA	2/19, 11%
KMT2D	0/10, 0%	0/2, 0%	2/10, 20%	1/13, 8%	NA	5/19, 26%
RB1	0/10, 0%	0/2, 0%	2/10, 20%	5/13, 38%	1/5, 20%	2/19, 11%
IGF1R	0/10, 0%	0/2, 0%	NA	NA	2/5, 40%	0/19, 0%
TP53	5/10, 50%	0/2, 0%	4/10, 40%	6/13, 46%	3/5, 60%	3/19, 16%
NF1	0/10, 0%	0/2, 0%	NA	3/13, 23%	1/5, 20%	2/19, 11%
ERBB4	0/10, 0%	0/2, 0%	NA	0/13, 0%	NA	1/19, 5%
SETD2	0/10, 0%	0/2, 0%	2/10, 20%	3/13, 23%	NA	6/19, 32%
MAP3K1	0/10, 0%	0/2, 0%	NA	NA	NA	0/19, 0%
EGFR	0/10, 0%	0/2, 0%	0/10, 0%	4/13, 31%	1/5, 20%	2/19, 11%
BCOR	0/10, 0%	0/2, 0%	1/10, 10%	0/13, 0%	NA	3/19, 16%
FLNA	0/10, 0%	0/2, 0%	NA	NA	NA	2/19, 11%

Conclusion ~ Malignant phyllodes tumour

Refining phyllodes tumour grading

PATIENTS. AT THE HE RT OF ALL WE DO.


The utility of a targeted gene mutation panel in refining the diagnosis of breast phyllodes tumours

Valerie Cui Yun Koh^{1,2}, Cedric Chuan Young Ng³, Boon Huat Bay², Bin Tean Teh^{3,4}, Puay Hoon Tan^{2,4,5}

Pathology (2019), **51(5)**, August

In case 1, a 35-year-old Caucasian female, diagnosed with malignant PT of the breast on excision biopsy, sought a second opinion in our institution, where a diagnosis of borderline PT was rendered.

As the initial and reviewed grades differed that impacted on management, with mastectomy recommended by the surgical oncologist for a malignant diagnosis, the customized panel was applied to determine if it could assist in refining grade assignment.

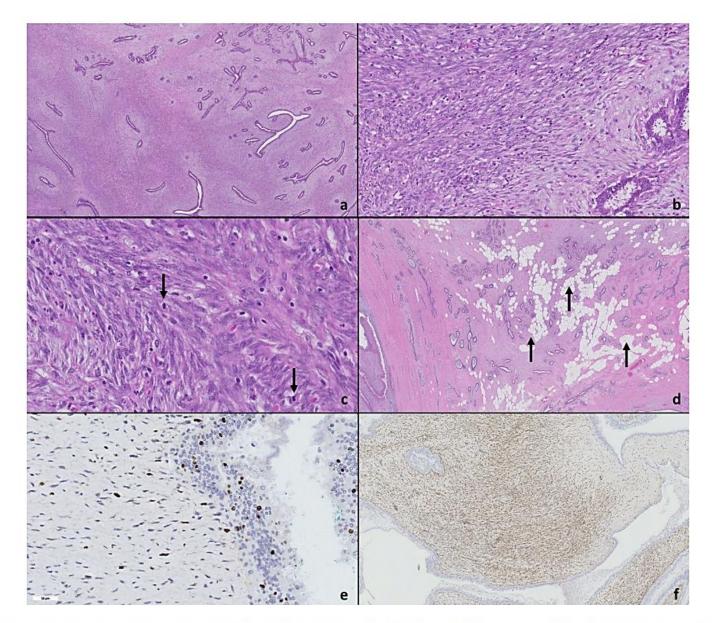
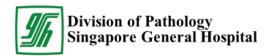
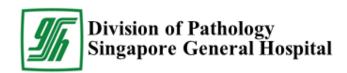


Fig. 1 Light microscopy images of sections from case 1 show (a) increased stromal cellularity in section 2 at low magnification, (b) increased stromal cellularity at medium magnification in section 12, (c) frequent mitoses (arrows) in section 2 at high magnification, and (d) permeative borders (arrows) in section 9 at low magnification. (e) IHC for Ki-67 shows scattered nuclear staining in both stromal and epithelial cells at medium magnification. (f) IHC for CD34 shows diffuse reactivity in the stromal cells of the PT (low magnification).


No stromal overgrowth or overt stromal atypia

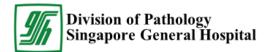

Table 1. Variant frequencies (%) of mutations found in cases 1 and 2

Case and section	TERT	RARA	MED12
no.	chr5:1295228	chr17:38510601-	chrX:70,339,215
		38510603	
Case 1 Section 1	20.4	13.6	19.8
Case 1 Section 2	30.7	<1	27.4
Case 1 Section 3	21.5	16.1	23.5
Case 1 Section 4	27.2	14.7	24.5
Case 1 Section 5	22.7	17.4	26.1
Case 1 Section 6	24.9	19.3	25.0
Case 1 Section 7	17.2	16.4	19.4
Case 1 Section 8	26.0	15.4	21.8
Case 1 Section 9	20.6	7.7	21.8
Case 1 Section 10	12.5	<1	10.8
Case 1 Section 11	22.3	22.4	28.7
Case 1 Section 12	19.7	<1	28.5
Case 1 Section 13	26.6	<1	17.7

No cancer driver mutations

Conclusion ~ Favour borderline phyllodes tumour

Arbitrating indeterminate cellular fibroepithelial lesions on core biopsy



Core biopsy diagnosis of cellular fibroepithelial lesions

- Clinico-radiologic-pathologic correlation.
- Pre-operative conclusion is useful to plan treatment approach ~
 - No further treatment for fibroadenoma.
 - Excision for phyllodes tumour.
 - Excision for cellular fibroepithelial lesions.

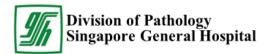
Can we be more diagnostically precise in this group of tumours?

Core biopsy diagnosis of *cellular fibroepithelial lesions* – prediction of phyllodes tumour

Author	Reference	Key findings predicting phyllodes tumour
Jacobs et al	Am J Clin Pathol 2005; 124: 342-354	Marked stromal cellularity mitoses in moderate stromal cellularity. Ki67 & topoisomerase IIα indices
Lee et al	Histopathology 2007; 51: 336-	Stromal cellularity ≥ 50% stroma, stromal overgrowth, fragmentation, adipose within stroma
Resetkova et al	Breast J 2010; 16:573-80.	No predictive value of clinical, radiologic or pathologic data Suggested follow-up alone for a patient subset
Jara-Lazaro et al	Histopathology 2010; 57: 220- 232	Marked stromal cellularity/atypia, stromal overgrowth, mitoses ≥ 2 per 10 hpf, ill-defined lesional borders, Ki67 & topoisomerase IIα indices ≥ 5%, reduced CD34 staining
Yasir et al	Am J Clin Pathol 2014; 142: 362-369	Mitoses, stromal overgrowth, fragmentation, adipose infiltration, heterogeneity, subepithelial condensation nuclear pleomorphism

RESEARCH ARTICLE

Open Access


A five-gene reverse transcription-PCR assay for pre-operative classification of breast fibroepithelial lesions

Wai Jin Tan¹, Igor Cima¹, Yukti Choudhury¹, Xiaona Wei¹, Jeffrey Chun Tatt Lim², Aye Aye Thike², Min-Han Tan¹ and Puay Hoon Tan^{2,3*}

Methods: We profiled the transcriptome of a training set of 48 formalin-fixed, paraffin-embedded fibroadenomas and phyllodes tumors and further designed 43 quantitative polymerase chain reaction (qPCR) assays to verify differentially expressed genes. Using machine learning to build predictive regression models, we selected a five-gene transcript set (ABCA8, APOD, CCL19, FN1, and PRAME) to discriminate between fibroadenomas and phyllodes tumors. We validated our assay in an independent cohort of 230 core biopsies obtained pre-operatively.

Results: Overall, the assay accurately classified 92.6 % of the samples (AUC = 0.948, 95 % CI 0.913–0.983, p = 2.51E-19), with a sensitivity of 82.9 % and specificity of 94.7 %.

FibroPhyllo™ Tissue Test

The performance of the FibroPhyllo™ Tissue Test in pre-operative classification of breast fibroepithelial lesions was validated in a cohort study of 230 core biopsies with at least 2 years of follow-up⁵.

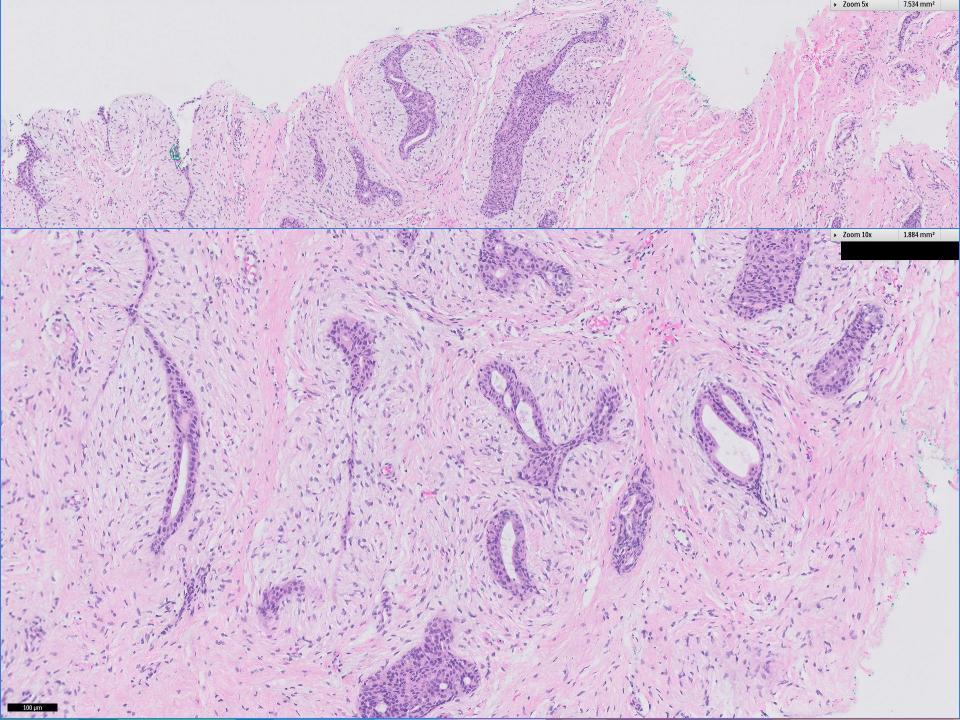
TEST REQUIREMENTS

- 1) FFPE Tissues Core / Excisional Biopsies
 - Minimum 50 microns equivalent (e.g. 10 slides of 5 micron-thickness or 5 slides of 10 micron-thickness)
 - · Slides uncharged and uncoated

- 2) Matched H&E slide with tumor region marked out
- Matched histology report of tissue biopsy
- 4) Tissue curls are not be accepted

Launched 31 October 2018

Diagnostics


7 days

Call our sales hotline: +65 6592 5102 or email: enquiry@lucencedx.com

Singapore 159552 Tel: +65 6909 0390 Fax: +65 6725 0590

TEST(S) PERFORMED

FIBROPHYLLO™ TISSUE ASSAY

GENES EVALUATED: Expression of 5 genes (ABCA8, APOD, CCL19, FN1 and PRAME) in FFPE breast fibroepithelial tissue

TEST INFORMATION

The FibroPhyllo™ Tissue assay is a multigene assay that predicts pre-operative breast fibroepithelial lesions as either fibroadenoma or phyllodes tumor.

CLINICAL DIAGNOSIS

CELLULAR FIBROEPITHELIAL LESION. A PHYLLODES TUMOR CANNOT BE EXCLUDED

TREATMENT HISTORY

NONE

SAMPLE INFORMATION

SPECIMEN TYPE: SLIDE HISTOLOGY NUMBER:

TUMOR PERCENTAGE IN TISSUE: Tumor region

marked out

TOTAL SURFACE AREA EXCISED: ~5.07 cm²

FIBROPHYLLO™ score = 0.00 Likely Fibroadenoma Likely Phyllodes Tumour Threshold 1.0

The FibroPhyllo[™] Tissue assay uses quantitative real time-PCR to determine the expression of a panel of 5 genes in breast fibroepithelial tissues. A FibroPhyllo[™] probability score (p-score) is calculated from the gene expression results using a validated prediction algorithm. P-score of 0.5 has been determined as a threshold for classification into likely fibroadenomas (\leq 0.5) and likely phyllodes tumor groups (\geq 0.5).

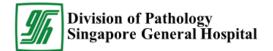
In a validation cohort of 230 pre-operative core biopsies (including biopsies with malignant phyllodes tumor), the FibroPhyllo™ Tissue assay was able to accurately predict classification of 213 (92.6%) biopsies¹. Prediction accuracy rates for fibroadenomas and phyllodes tumors were 94.7% (179/189) and 82.9% (34/41) respectively with positive (PPV) and negative (NPV) prediction values of 77.3% and 96.2%¹.

ithology eneral Hospital

RESEARCH ARTICLE

Open Access

A novel genomic panel as an adjunctive diagnostic tool for the characterization and profiling of breast Fibroepithelial lesions


Yirong Sim^{1,2*}, Gwendolene Xin Pei Ng^{1,3,4}, Cedric Chuan Young Ng^{3,4}, Vikneswari Rajasegaran^{3,4}, Suet Far Wong^{3,4}, Wei Liu^{3,4}, Peiyong Guan⁵, Sanjanaa Nagarajan^{3,4}, Wai Yee Ng¹, Aye Aye Thike⁷, Jeffrey Chun Tatt Lim⁷, Nur Diyana Binte Md Nasir⁷, Veronique Kiak Mien Tan^{1,2}, Preetha Madhukumar^{1,2}, Wei Sean Yong^{1,2}, Chow Yin Wong², Benita Kiat Tee Tan^{1,2}, Kong Wee Ong^{1,2}, Bin Tean Teh^{4,6} and Puay Hoon Tan^{7,8}

- Targeted sequencing of a 16 gene panel on 275 formalin-fixed paraffin embedded fibroepithelial lesions.
- 241 core biopsies and 34 surgical excisions ~ 212 FAs, 35 benign, 21 borderline and 7 malignant PTs.
- Mutations were observed in all 16 genes across FELs, except for a lack of PTEN mutations in FAs and an absence of MAP3K1 and IGF1R mutations in PTs.
- Common to all grades of PTs were mutations in MED12, TERT promoter, FLNA and RB1.
- Predictive scoring system that classified FELs on core biopsy as low or high risk of being PTs (p < 0.001).

Table 8 The scorecard describing the weightage points of each predictor that was derived through their beta coefficients and the cut-off points required for a lesion to be classified as either a fibroadenoma or a phyllodes tumor

Predictors	Score
Genes	
Presence of mutations in TP53 gene	
Yes	1
No	0
Mutation types	
Presence of promoter mutation	
Yes	1.22
No	0
Presence of nonsense mutation	
Yes	1.14
No	0
Risk groups	
Low risk of being a phyllodes tumor	< 1
High risk of being a phyllodes tumor	≥ 1

Genomic predictive scoring system

ARTICLE OPEN

Phyllodes tumors with and without fibroadenoma-like areas display distinct genomic features and may evolve through distinct pathways

Fresia Pareja¹, Felipe C. Geyer¹, Rahul Kumar¹, Pier Selenica¹, Salvatore Piscuoglio o¹, Charlotte K. Y. Ng o¹, Athleen A. Burke¹, Marcia Edelweiss¹, Melissa P. Murray¹, Edi Brogi¹, Britta Weigelt¹ and Jorge S. Reis-Filho¹

npj Breast Cancer (2017)3:40

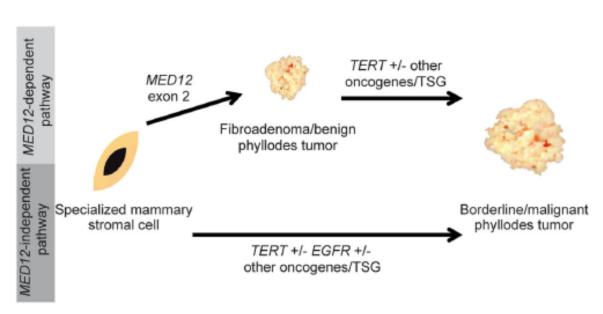
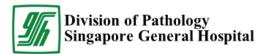
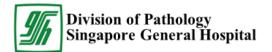



Fig. 4 Proposed model of the evolutionary origin of borderline and malignant phyllodes tumors. Phyllodes tumors might follow two different evolutionary pathways. (i) In the MED12-mutant pathway, MED12 exon 2 mutations are posited to lead to the development of a benign fibroepithelial lesion, which upon the occurrence of additional genetic alterations affecting TERT and/or other cancer genes may progress to a borderline or malignant phyllodes tumor. (ii) In the MED12-independent pathway, borderline or malignant phyllodes tumors might arise de novo, through the acquisition of genetic alterations targeting cancer genes, such as TERT and/or EGFR. TSG tumor suppresor genes


Summary

- Genomics of fibroepithelial tumours ~ fibroadenoma, phyllodes tumour.
- Findings of the International Fibroepithelial Consortium study.
- Potential clinical applications.

Future work

- Non-MED12 mutated pathogenetic pathway.
- Malignant and metastatic phyllodes tumours.
- Malignant heterologous elements.
- Role of the epithelium, and epithelial-stromal interactions.
- Enlarging the International Fibroepithelial Consortium (IFC)
 Funding

SGH Pathology Breast research team

- Dr Aye Aye Thike
- Mr Jeffrey Lim
- Ms Valerie Koh
- Ms Nur Diyana Bte Md Nasir
- Dr Joe Yeong
- Benjamin Loke
- Chen Xiaoyang
- Johnathan Lim

Breast service team

- Dr Angela Chong
- Dr Inny Busmanis
- Dr Jabed Iqbal
- Dr Syed Salahuddin
- Dr Benjamin Yongcheng Tan
- Dr Tze Wei Chng
- Dr Timothy Tay

Anatomy, Yong Loo Lin School of Medicine, NUS

Dr Boon Huat Bay, Dr George Yip

Acknowledgements

Clinical Research SGH

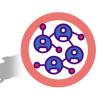
Dr HuiHua Li

Duke-NUS/NCCS

- Dr Bin-Tean Teh
- Dr Patrick Tan
- Dr Steve Rosen
- Dr Jing Tan
- Dr Cedric Ng
- Dr Choon Kiat Ong
- Dr Weng Khong Lim
- Dr Guan Peiyong

Breast Surgical Oncology

- · Dr Kong Wee Ong
- Dr Benita Tan
- Dr Veronique Tan
- Dr Yirong Sim
- Dr Sue Zann Lim


International fibroepithelial consortium

- Dr Min-Han Tan
- Dr Mihir Gudi

Join the International Fibroepithelial Consortium

AIMS ...

To build a network of pathologists interested in fibroepithelial tumours.

To increase the scientific knowledge on this fascinating group of tumours.

To collaborate on genomic research in fibroadenomas and phyllodes tumours.

To exchange interesting and challenging cases.

To make pathologist friends all over the world!

